Midterm Exam Calculus 2

12 March 2015, 14:00-16:00

The exam consists of 4 problems. You have 120 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. $[5+10+10$ Points. $]$

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}} & \text { if }\langle x, y\rangle \neq\langle 0,0\rangle \\
0 & \text { if }\langle x, y\rangle=\langle 0,0\rangle
\end{array} .\right.
$$

(a) Is f continuous at $\langle x, y\rangle=\langle 0,0\rangle$? Justify your answer.
(b) Compute the partial derivative of f at $\langle x, y\rangle \neq\langle 0,0\rangle$.
(c) Use the definition of partial derivatives to determine the partial derivatives of f at $\langle x, y\rangle=\langle 0,0\rangle$.
2. $[10+5+5$ Points.]

Consider the curve parametrized by $\mathbf{r}:[1,4] \rightarrow \mathbb{R}^{3}$ with

$$
\mathbf{r}(t)=\ln t \mathbf{i}+\frac{t^{2}}{2} \mathbf{j}+\sqrt{2} t \mathbf{k}
$$

(a) Determine the parametrization of the curve by arclength.
(b) For each point on the curve, determine a unit tangent vector.
(c) At each point on the curve, determine the curvature of the curve.
3. [10+15 Points.]

Consider the ellipsoid

$$
3 x^{2}+2 y^{2}+z^{2}=6 .
$$

(a) Determine the tangent plane of the ellipsoid at the point $\langle x, y, z\rangle=\langle 1,1,1\rangle$.
(b) Use the method of Lagrange multipliers to find the largest sphere centered at the origin which is inscribed in (i.e. contained in the region enclosed by) the ellipsoid.
4. [20 Points.]

Integrate the function

$$
f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \mathrm{e}^{x^{2}+y^{2}+z^{2}}
$$

over the region $W \subset \mathbb{R}^{3}$ enclosed by the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=2$.

